
Approximated Ripple Carry Adders Evaluation
Andrei Pochmann Koenich1, Gabriel Ammes Pinho1, Paulo Francisco Butzen2 and Renato Perez Ribas1

1Institute of Informatics and 2 School of Engineering, UFRGS, Brazil
{andrei.koenich, gapinho}@inf.ufrgs.br ,{paulo.butzen, renato.ribas}@ufrgs.br

Abstract—In approximate computing, related circuits are
highly relevant to enable the efficiency of specific operations. This
work aims to investigate the behavior of binary adder circuits
known as ripple carry adder (RCA) in cases where certain
breaks in their carry chain occur. Those breaks aim to provide
velocity improvement in the operation of binary sums through
an approximate adder circuit. In order to evaluate the impact
of those breaks in operations involving RCA, some experiments
were carried out, taking into account the insertion of 0 or 1 logic
values in the broken carry chain position, allowing the analysis
of performance gain and functional errors generated. Such an
evaluation can be considered a basis for studying other adder
architectures.

Index Terms—Approximate computing, ripple carry adder, carry
chain, performance analysis.

I. INTRODUCTION

Approximate computing comprises a set of techniques
applied in a computational system through an imprecise or
inexact execution, aiming to obtain performance improvement
or energy according to a threshold of accepted errors [1,
2]. Several digital applications of the contemporary world,
such as signal processors, sensors, and machine learning,
can guarantee an adequated operation even when they are
subjected to eventual errors during their operation [3]. This
relevant feature, known as error resilience, makes the study of
approximate computation quite interesting and worthy in the
integrated circuit design domain.

There are different design levels in which it is possible
to explore approximate computing, from compilers and high-
level programming languages algorithms to lower levels com-
prising hardware architecture and electronic circuitry [1, 2].
Approximating arithmetic circuits are particularly relevant due
to their large applicability in digital system design [4].

This work extensively evaluates approximate RCA, consid-
ering different positions of breaking the carry chain. Moreover,
the insertion of 0 (cut) and 1 (induction) logic values on
these positions result in different behaviors. Furthermore, the
relationship between performance and error metrics represents
a crucial design choice according to the number of breaks
in the carry chain. In this context, another way to make
approximations in an RCA is to modify the truth tables of
its internal circuits, aiming at energy saving and reduction in
the number of electronic components [5, 6].

The structure of this paper consists of reviewing the error
metrics related to approximate computation in Section II, and
the classical ripple carry adder in Section III. In Section IV,
the methodology of the approximate RCA investigation is

described. Experimental results are discussed in Section V.
Finally, the conclusions are outlined in Section VI.

II. ERROR METRICS

In approximate computing, error metrics represent math-
ematical expressions that measure the amount of error in
the approximate circuit operation results. Therefore, error
metrics can allow a rational and effective control of applied
optimization procedures.

The main error metrics considered in the scope of this work
are presented below [4, 7]. For each mathematical expression
presented, it is assumed that n represents the total number of
inputs related to a given digital circuit (that is, the number of
bits), and Bn represents all possible combinations of inputs.
In contrast, f(x) and f̂(x) correspond to the output values for
the original circuit functionality and the approximate circuit
behavior, respectively.

The error rate (ER) measures the frequency or probability
of observing one or more incorrect output bits in a digital
circuit. This error metric is considered the most common,
being widely applied in logic and arithmetic circuit analysis.
It can be estimated as follows:

ER =
1

2n

∑
∀x∈Bn

f(x) ̸= f̂(x)

The mean absolute error (MAE) consists of the arithmetic
mean of all the absolute errors obtained with the operation
of an approximate circuit. In turn, the absolute error or error
magnitude (EM) corresponds to the modulus of the difference
between the values obtained in the same computational opera-
tion, with and without the implemented approximation. MAE
can be estimated as follows:

MAE =
1

2n

∑
∀x∈Bn

|f(x)− f̂(x)|

The relative error (RE) is the ratio between the absolute
error and the expected output value of a given operation, as
follows:

RE =
|f(x)− f̂(x)|

f(x)

The mean squared error (MSE) is the arithmetic mean of
the squares of the absolute errors. With this error metric, it
is possible to measure the accuracy of an approximate circuit
considering that each absolute error is squared, which prevents
the occurrence of errors with high magnitude. The square root

of the metric error (RMSE), in turn, is obtained simply through
the square root of the MSE. In dimensional analysis, it causes
the error to return to the original unit of measurement. RMSE
can be estimated as follows:

RMSE =

√
1

2n

∑
∀x∈Bn

(f(x)− f̂(x))2

III. RIPPLE CARRY ADDER

The RCA architecture comprises a logical chain combi-
nation of a certain amount of full adders (FAs), making it
possible to perform a sum between two n-bit binary operands
[8]. A full adder, whose truth table is shown in Fig. 1,
represents the most elementary block and can be implemented,
for instance, by two exclusive-OR (XOR) logic gates, two
ANDs, and a single OR logic gate.

Figure 1: Schematic and truth table of full adder.

The circuit illustrated in Fig. 1 receives two bits, A and
B, and a third bit representing the eventual carry-in (Cin),
returning the value of the output bit in S and the bit that
represents the occurrence of carry-out in Cout. Therefore,
when associating several full adders, it is possible to perform
the sum between two binary operands with any number of
bits, as indicated in Fig. 2. An RCA performance (velocity) is
determined by the propagation chain of the carry signal, that
is, by the number of cascaded FA blocks.

Figure 2: Block diagram of 4-bit ripple carry adder (RCA).

IV. APPROXIMATE RCA ANALYSIS

Fig. 2 shows a carry propagation chain through the FA
blocks, represented by output signals C0, C1, and C2. In the

context of approximate computing, it is possible to perform
breaks at strategic points in the carry propagation chain in
order to reduce its length, so increasing the adder operation
speed at the expense of generating some logic errors at the
output [8]. Depending on how these breaks occur, for instance,
taking into account the significance of the bit chosen to
perform an interference in the respective carry-in, different
values of errors are obtained for each of the metrics described
above.

Our methodology for analyzing the errors produced by inter-
ference in the carry propagation chain in a sum involving two
binary operands involves verifying the error metrics produced
by cuts (i.e., making carry-in sinal equals to 0 logic value) and
inductions (i.e., making carry-in signal equals to 1 logic value)
in specific FA chain positions. For each experiment presented
in Section V, we obtain the error metrics described in Section
II.

• For the first experiment, shown in Table I and Fig. 3,
we consider an RCA with 8 input bits. All 8-bit input
combinations were considered, totaling 65536 operations.
We perform fixed interferences (cuts and inductions) only
in a specific bit. Metrics are calculated for each modifi-
cation in the adder architecture. This experiment shows
the relationship between the two types of interferences
(cut and induction).

• For the second experiment, shown in Table II and Fig.
4, we performed the same operations described in the
previous experiment. However, all operations (with or
without carry-in interference) in which overflow occurs
are disregarded in metric calculations. Again, this experi-
ment aims to show the relationship between the two types
of interference, and allow the analysis of changes in the
values of the error metrics (comparing this experiment
with the first one) caused by disregarding overflow.

• For the third experiment, we consider an RCA with 16
input bits, as shown in Table III. As the number of
operations for a 16-bit adder is very high, ten thousand
simulations were considered to obtain the proposed met-
rics. In this experiment, we also performed only the cut
in a specific bit. This experiment seeks to analyze the
behavior of the approximation in an adder with more
input bits and the impact of non-exhaustive simulation.

• For the fourth experiment, shown in Table IV, in Fig.
5 and in Fig. 6, we also consider a 16-bit RCA, but
interferences are performed to break the carry chain
in more than once. This way, when one cut is made,
the chain is split into two parts; when two cuts are
made, the chain is split into three parts, and so on. This
experiment aims to understand the relationship between
the approximate RCA performance and the number of
inserted errors.

V. EXPERIMENTAL RESULTS

By analyzing Table I, it can be seen that the error rate (ER)
related to carry-in cuts starts closer to 0.25, while the same
metric related to carry-in inductions starts closer to 0.75. As

Table I: Exhaustive stimilus of 8-bit RCA, taking into account
overflow cases.

Bit Cut Ind
ER MAE MRE ER MAE MRE

1 0.25 0.99 0.50 0.75 2.97 0.04
2 0.37 2.95 1.38 0.62 4.92 0.07
3 0.43 6.78 2.24 0.56 8.71 0.11
4 0.46 14.06 3.00 0.53 15.93 0.19
5 0.48 27.12 3.54 0.51 28.87 0.31
6 0.49 47.25 3.67 0.50 48.75 0.49
7 0.49 63.5 2.88 0.50 64.50 0.67

Figure 3: Error rate comparison considering overflow cases.

the interference bit significance increases, both values tend
to equal 0.50. This behavior can be seen in Fig. 3, where
an intersection between the two curves is shown. In turn, the
mean absolute errors (MAE) present relatively close values for
both types of interference, which also increase along with the
significance of the interference bit. As for MAE, it is noted
that the values related to carry-in cuts are substantially higher
than those related to carry-in inductions.

By analyzing Table II, one can see no change in the behavior
of ER values in cases of carry-in inductions compared to the
previous experiments. However, it can be seen that, from a
certain point onwards, the ER values of the carry-in cut-off
cases begin to decrease with the increase in the significance of
the interference bit, as graphically shown in Fig. 4. In addition,

Table II: Exhaustive stimilus of 8-bit RCA, ignoring overflow
cases.

Bit Cut Ind
ER MAE MRE ER MAE MRE

1 0.24 0.49 0.00 0.75 1.50 0.01
2 0.36 1.47 0.01 0.62 2.50 0.02
3 0.42 3.37 0.02 0.56 4.50 0.03
4 0.43 7.00 0.05 0.53 8.50 0.07
5 0.42 13.50 0.09 0.51 16.50 0.16
6 0.36 23.53 0.15 0.50 32.50 0.38
7 0.24 31.62 0.19 0.50 64.50 1.04

Figure 4: Error rate comparison ignoring overflow cases.

Table III: Evaluation of 16-bit RCA with random operands
and carry-in cuts.

Bit ER MAE RMSE MRE
1 0.24 0.49 0.99 0.00
2 0.37 1.50 2.45 0.00
3 0.42 3.43 5.24 0.00
4 0.47 7.53 10.97 0.00
5 0.47 15.31 22.13 0.00
6 0.48 31.21 44.69 0.00
7 0.49 63.64 90.25 0.00
8 0.49 126.15 179.71 0.00
9 0.49 253.54 360.29 0.01

10 0.51 522.24 731.28 0.02
11 0.50 1034 1455 0.04
12 0.49 2018 2875 0.07
13 0.50 4116 5807 0.14
14 0.49 8155 11559 0.24
15 0.50 16420 23195 0.38

it is possible to observe a greater distance in the MAE values
for the two types of interference. Finally, it is noted that the
disregard of overflow cases have caused a significant reduction
in the values of MAE related to carry-in cuts.

By observing Table III, we have noticed that in the ER
calculations, there is a fast convergence to the value 0.50 as
we increase the significance of the interference bit. In MAE
values, it is possible to notice the proximity of the results with
powers of two. The RMSE and MRE metrics, in turn, increase
with the significance of the bit as expected, and the growth of
MRE occurs slowly compared to the other experiments.

By observing Table IV, it is possible to notice that a limita-
tion in the size of the carry-in chain promotes an increasing in
the value of ER, which are close to 1, as indicated in Fig. 5.
Increasing the number of carry-in cuts in different bits, there is
a significant augmentation in MAE values, with the exception
that in the largest possible limitation in the size of the carry-
in chain, a brief decreasing occurs, as graphically observed in
Fig. 6.

Table IV: Evaluation of 16-bit RCA with random operands
and simultaneous carry-in cuts.

Carry Chain Max. Size ER MAE Bits w/ Cuts
8 0.49 62 7
5 0.73 515 5,1
4 0.84 2075 3,7,12
3 0.89 4145 2,5,9,13
2 0.93 8233 2.5.8,11,14
1 0.96 8016 2,4,6,8,10,12.14

Figure 5: Error rate analysis with simultaneous carry-in cuts.

VI. CONCLUSIONS

This paper presented an analysis of the impact of breaking
the carry chain of an RCA and a simulator. As a result, the
impacts of interference on the RCA carry-in chains could be
graphically and metrically visualized through the use of error
metrics related to the approximate computation. The different
ways of interfering with carry-in chains guarantee several
different analysis options, guaranteeing the need for different
forms of analysis on the subject. The potential applicability of
adder circuits implies the importance of analyzing its operation
in approximate computing, justifying the performance of the
experiments demonstrated and experiments to be carried out in
future projects. In addition to breaking the carry chain, another
possible approach is to modify the functionality of the blocks
used, such as the full adders (FA).

In future work, extending the simulator developed to con-
sider eventual logic behavior modifications in FA is interesting.
Another natural extension of this work is considering other
adder architectures, such as carry-select (CSelA), carry-skip
(CSkipA), and carry lookahead (CLA) adders. Such an exten-
sion of research can reveal new efficient ways to approximate
adder circuits, contributing to the development of approximate
computing.

REFERENCES

[1] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. “Ap-
proximate Computing: A Survey”. In: IEEE Design &
Test 33.1 (2016), pp. 8–22.

[2] Sparsh Mittal. “A survey of techniques for approximate
computing”. In: ACM Computing Surveys 48.4 (2016).

Figure 6: Mean absolute error analysis with simultaneous
carry-in cuts.

[3] Vinay Chippa et al. “Analysis and characterization of
inherent application resilience for approximate comput-
ing.” In: 2013 Design Automation Conference (DAC).
2013.

[4] Honglan Jiang et al. “Approximate Arithmetic Circuits:
A Survey, Characterization, and Recent Applications”.
In: Proceedings of the IEEE 108.12 (2020), pp. 2108–
2135.

[5] Vaibhav Gupta et al. “IMPACT: IMPrecise adders for
low-power Approximate CompuTing”. In: International
Symposium on Low Power Electronics and Design
(ISLPED)). 2011.

[6] Zhixi Yang et al. “Approximate XOR/XNOR-based
Adders for Inexact Computing”. In: IEEE International
Conference on Nanotechnology. 2013.

[7] Zdenek Vasicek. “Formal Methods for Exact Analysis
of Approximate Circuits”. In: IEEE Access 7 (2019),
pp. 177309–177331.

[8] Israel Koren. Computer Arithmetic Algorithms. A K
Peters/CRC Press, 2001.

